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Abstract
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theorem on pseudo spaces and establish some new fixed point results. As
applications, we derive some new existence results for system of variational
inequalities.
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1. Preliminaries

In very recent years, Marchi and Marti nez-Legaz [8] extended the Peleg’s theorem
[9] to H-spaces and obtain some generalizations of Fan-Browder’s fixed point
theorem, also discussed the Ky Fan type inequalities and the intersection theorem for
set with convex sections. Park and Kim [11] gave a Peleg's theorem on G-convex
spaces and applications to a whole intersection theorem and to prove existence
theorems of equilibrium points in qualitative games. In our recent works [6], we
discuss the general Peleg type KKM theorem on pseudo H-spaces and establish some
new fixed point results. In this paper, we first introduce the general Peleg type KKM
theorem on pseudo spaces and establish some new fixed point results. We also derive
some new coincidence theorems and the geometric formulation of the Ky Fan type
minimax inequality. As an application, we discuss the system of variational
inequaities and Ky Fan type minimax inequalities..

Let X be anon-empty set. We denote by 2* the family of al subsetsof X , by
| X'| thecardindity of X .If X isasubset of avector space, co(X) denotesthe
convex hull of X .Let A" denote the standard n-smplex cofe,,...e
e isthe ithunitvectorin R" for i=12,..,n+1.

}, where

n+1

We first recall the definition the pseudo space asfollows.

Definition 1.1. [7] Atriple (X,D,{q,}) issaid to beapseudo spacesif X isa
topological space, D be anonempty set and for each nonempty finite subset A of
D , there is a corresponding mapping g, :A*" —P(X) is an upper
semi-continuous mapping with nonempty compact vaues such that the following
two conditions hold: (1) there is an upper semi-continuous mapping
Qs : A" — P(X) with nonempty compact values such that g, is arestriction of
q, on AP for dl =B A and (2) there is an upper semi-continuous
mapping g : A"t — P(X) with nonempty compact values such that g, is a
resrictionof g, on A% fordl AcCcD.If D=X,thetriple (X,D.,{q,})
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can bewrittenby (X,{q,}).

If the mapping g, is singlevaued and we set I'(A)=q,(A"™") for each
nonempty finite subset A of X, then (X,D,I') form a G -convex space (One
can refer to [11]). Example of pseudo space we can find in our recent results [7].

If A, B are two nonempty finite subsets with Ac B and |A|+1=|B|. Then
AN isafaceof AP correspondingto A, theset A*™ shall homeomorphic to
the st A *'x{0} cA®™. In the case like this, we shal replace the notation
“CO (AT {O}) c g (AP " by “ g, (AM) < g (AP . The other cases (i.e,
| A|+1<|B|) are similar to the before one in the seque.

Let P and Q betwo non-empty setsin apseudo space (X,D.{q,}), we say that
P is q-convex relative to Q if for each nonempty finite subset A of D with
AcQ, we have q,(A"")cP. We note that if Q is non-empty and P is
q-convex relative to Q, then P is automaticaly non-empty. If P=Q, we say
P isa q-convexsetof X.

The lower inverse of F:X — 2" isthe set-valued map F~:Y — 2* defined by
F (B)={xe X:BNF(X)=Q} for Be2".Theupperinverseof F:X —2" is
the set-valued map F':Y —2* defined by F*(B)={xe X:BcF(x)} for
Be2'. Asubsst W of Y is caled compactly closed (compactly open, resp.) if,
for any compactset K in Y, WK isclosed (open, resp.) in K.

For a pseudo space (X,D,{q,}), a red-valued function f:X — R is cdled
g-quasi-convex (resp., g-quasi-concave) if the sats f'((—o,4]) (resp.,
f *([1,+x))) ae q-convexforal AeR.

For eech ne N, we say that the family {Q,},_, has intersection property with
respectto F if thefollowing property hold:

F_(ﬁQk) :ﬁ F_(Qk)'

We say that the family {Q,},_, hasintersection property with respectto F on
nonempty set K if thefamily {Q, nK}_ hasintersection property with respect
to F,thatis, thefollowing property hold:
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F’(rn]Qk mK):ﬁ F(Q, NK).

We note that if F isasingle vaued or vector valued function, then it satisfy the
above both intersection properties.

Through out this paper, we denote |={12..m} , le_[kel X, ad

qA :erl qu Whma/a Xk and qu ’ k € I ,aeglven

2. Main Results

We first need the generalized KKM theorem due to Peleg [9].
Peleg Theorem: For kel, let N, be a nonempty finite set and A™™ be
(N, |-D-smplexin R™If C¥, ie{12../N, } and kel,areclosed subsets

of AMPEx AN x AN guch that foreach Q, < N, , kel

Ql
AN AN AR AN | ] €
j=1

-1

where A%™ denotesthefaceof A™™ correspondingto Q, . Thenwe have

Ny

[ C=2.

m
k=1 i=1
Now we shall use the Peleg theorem to prove our main result.

Theorem 2.1: Let (X,,D,.{qd,}) be a pseudo space, N, be any nonempty finite

subset of D, for kel.If C¥, xeN, and kel, are compactly closed subsets

of le_[kel X, that has intersection property with respect to g on any

nonempty compact setin X such that foreach A e2“%  {Z}, kel,
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G, (A% )y (A% ) x--x gy (A < C,

k=1 xe A,
then
m
[ Ci=2.
k=1 xeNy
Furthermore, if the product space X is compact or some finite intersection of C
Is compact, then

ﬁ Ci#@.

k=1 xeDy

Proof: Let g, : A™ ™ x...x AM™ 5 2% bethe mapping defined by

qy (o' a’,..,a™) = (0, (ah), Ay, (a®),... gy, (@™)),
where o e A™™ kel, N=N;xN,x...N_.Thenwe can deduce that
AN A oy (YU ED < U an (B
k=1 xe A, k=1 xeA,

By Peleg Theorem and the intersection property,

m m

W EI=1) w(E)=2.

k=1 xeN, k=1 xeNy
Therefore,
NN C=2)E =2
k=1 xeNy k=1 xeN
Furthermore, if the product space X is compact or there are kel and xe N,

suchthat C* iscompact or somefiniteintersectionof C* iscompact, then

m

N[ Ci=. u

k=1 xeDy

Now we have the following corollary which is dight generalized the results derived
by Marchi and Marti nez-Legaz ([8], Lemma 3).
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Corollary 2.2: For kel,let X, be atopological space, N, any nonempty finite
set of D, and {l“f\}gﬂ\d,k a family of nonempty contractible subsets of X, such
that Ac B implies T T . If C, xeN,, kel, are closed subsets of

X:l_[lexk such that foreach kel and A e2“ 6 {&},

ry xexry <1 C.

k=1 xeA

then

m

) Ci=2.
k=1 xeN,

Furthermore, if the product space X is compact or some finite intersection of C*

is compact, then

ﬁ Ck=0.

k=1 xeDy

Proof: For each k e 1 and for each nonempty set A < N, , by Horvath's theorem

(5], Theorem 1) , there is a continuous function f, :A™™ T} and

f

o = Ty, lo such that f, :A%™ ST . We can choose qy (¢)={f, (")}

for al o e A*™. Then, for each kel, (X,,N,.{q,}) forms a pseudo space,

and

qu(A\Al\—l)x__‘Xqu(A\An\—l)Crx x---x I Cﬂ U ck.

k=1 xe A,

By Theorem 2.1, we know that
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m

) Ci=2.

k=1 xeN

Furthermore, if the product space X is compact or there are kel and xe N,
suchthat C! iscompact, then

ﬁ Ck=0. |

k=1 xeDy

We can use the same way as the proof of Corollary 2.2 to prove the following results
which is discussed on G-convex space. We note that for a G-convex space
(X,D,I') aso can form a pseudo space (X,D.{q,}) if for each nonempty subset

A of D and the corresponding continuous function f,:A** T, and we
define q,(c) ={ f,(a)} for aeA™™.

Theorem 2.3: For kel , let (X,,D,I") be a G-convex space, N, any
nonempty finite set of D,. If C¥, xeD,, kel, are compactly closed subsets of

X =], X, suchthatforeach kel and A 2", {2},

ry xexry <1 C.

k=1 xeA

then

Furthermore, if the product space X is compact or some finite intersection of C!

is compact, then
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3. Coincidence theorems

From Theorem 2.3, we have the following coincidence results which is dight
generalized the results duce to Park ([11], Theorem 1):

Theorem 3.1: For kel let (X,,D,,I'"") be G-convex space, G, :D, -2 and

F:X — 2" suchthat
(1) foreach kel and xeD,, F'G,(x) iscompactly closed; and

(2) for each nonempty finiteset A=T] _ A <[] (2>, {2},
FlAix---xl“Zn cﬂ U F*G, (x).
kel xeA

If the product space X is compact or some finite intersection of F*G,(X) is

compact, then thereisa we X suchthat F(w) () [, G (X).

xeDy

Proof: We canchoose C' =F*G,(x) foreach kel and xeD,.

Applying Theorem 2.3, we have
F'G(x)=()[)C=2.

1 xeDy k=1 xeDy

EDE

=~
Il

m

But ﬂ'knzlﬂxeDk F*G, (X) = F+(ﬂk:1ﬂxeDk G, (X)), there is a we X such that

F(w) < ﬂkel ﬂxwk Gk (x)

Next, we derive another coincidence theorem that different from Theorem 3.1:

Theorem 3.2: For kel,let (X,,D,,T'*) be a G-convex space, the two mappings
G, :D,—2" and F:X —2" have compactly closed values such that the family
{G,(x):kel,xeD,} hasintersection property with respectto F and

(1) foreach kel and xeD,, F G, (x) iscompactly closed; and
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(2) for each nonempty finiteset A=J ] _ A <], (2>, {2},

Filx---xl“r:m cm U F G, (x).

kel xeA

If F has compact values or some finite intersection of G, (x) is compact, then
thereisa we X such that F(W)m(ﬂkel N, G =D,

Proof: We can choose Cf=F G, (x) for each kel and xeD,. Applying
Theorem 2.3, we have

ﬁ N F’Gk(x):ﬁ (Cy=@.

k=1 xeA k=1 xeA

But ﬂ:ﬂﬂxe& F G (x) = F*(ﬂrk“zlﬂxe& G, (x)), there is a we X such that

F(w)ﬂ(ﬂkel ), G =D . If F hes compact values or some finite

intersection of G, (x) iscompact, thenthereisa we X such that

FO) (O, N, GO 22 .

Now, we shall discuss the coincidence theorems on pseudo space as follows:

Theorem 3.3: For kel, let (X,,D,,{q,}) be a pseudo convex space, N, any
nonempty finite setof D,, G, :D, —»2" and F:X — 2" such that the following

conditions hold:
(1) foreach kel and xeD,, F'G,(x) iscompactly closed;

(2) for each nonempty finiteset A=J] A ][] (2. {2},

ql(A‘Al"l)x-“X A, (AVMH) c ﬂ U F+Gk (X);

kel xeA,
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and
(3) the family {F'G,(x):k e l,xeD,} has intersection with respect to q,,
where q, is defined as the same as the one in the proof of Theorem 2.1 .

If the product space X is compact or some finite intersection of F*G,(x) is

compact, thenthereisa we X such that F(w)cﬂkel ﬂxw G, (x).

Proof: Wecanchoose C' =F*G,(x) foreach kel and xeD,.
Applying Theorem 2.1, we have

ﬁ(]Fﬁdmzﬁ(]qig.

k=1 xeDy k=1 xeDy

But (), ., F'G()=F" ([, Gc(¥), thereisa we X suchthat

F(W) - ﬂkel ﬂka Gk(x) ) u

Theorem 3.3 generdize the Theorem 3.1 to pseudo space. Next, we derive
another coincidence theorem that different from Theorem 3.3:

Theorem 3.4: For kel, let (X,,D,.{d,}) be a pseudo convex space, N, any
nonempty finite set of D,, G, :D, —2" and F:X —2" such that the family
{G,(x):kel,xeD,} has intersection property with respect to F and the family
{F G, (x):kel,xeD,} has intersection property with respect to g, and the
following conditions hold:

(1) foreach kel and xeD,, F'G,(x) and G,(x) are compactly closed;

and

(2) for each nonempty finiteset A=J ], A <[], (2>, {2}).

6 (A% x-xq, (A () [ F G ().

kel xeA,
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Then there is a we X such that F(w)m(ﬂkeI .. Gi(X)) =D Furthermore,

if the product space X is compact or some finite intersection of G, (x) is compact,

then F(w)( (), N0, G(N#D.

Proof: We only need to check the f.i.p. hold for the collection
{G.(x):kel,xeN,}. Indeed, we can choose C'=F G, (x) foreach kel and
x € D, . Applying Theorem 2.1, we have

(m] N F’Gk(x):ﬁ () Cl=@.

k=1 xeN k=1 xeN

But (), ,(,.. FG0)=F (N, G(¥),thereisa we X suchthat

FW (N, G N =2 n

Theorem 3.4 generaize Theorem 3.2 to pseudo space. We note that if we take
Y=X and F is the identity mapping on X , then both Theorem 3.3 and
Theorem 3.4 can be reduced to Theorem 2.1 and both Theorem 3.1 and Theorem 3.2
can be reduced to Theorem 2.3.

4. Fixed point Results
Next, we establish a Fan-Browder’ s type fixed point theorem on pseudo space:

Theorem 4.1: For each kel , let (X,,{d,}) be a pseudo space and
S,,T. : X — 2"« be set-valued mappings such that
(1) foreach kel and x e X,,theset S *(x.) iscompactly open,
(2) for each kel and xeX , if S (x) is nonempty, then T,(x) is
q -convex relative to S, (x), that is, for any nonempty finite subset C, of
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S, (x), we have q, (A“™) T (x),

(3) foreach xe X ,thereexists k=k(x)el suchthat S,(x)=;and

(4) thereare kel and x e X, suchthat X, S '(x,) iscompact.
Then there exist X = (X3, X»-.»Xn) € X and k el suchthat xgeT (X).
Proof: For each kel , let F,G, :X, »2° be the mappings defined by
G (x)=X, T'(x) ad F(x)=X, S'(x) for x eX, . Then the
mapping F, has compactly closed for each kel . From (3), we have

U™ U, S:*(x) =X . Thisimpliesthat

NN Rx)=X, LmJ U sx)=2.

k=1 x X k=1 x eXy
Hence, by Theorem 2.1 with D, = X, for each k €1, there exist nonempty finite
subsets A, of X,, kel,suchthat

AN gy (A ), () () U R (9

k=1 xe A,

We can choose some point X = (X3, X2, Xm) With

X = (X Rarees X) € G (AN ) Gy (A% ) (A7), (7, U, Fe0)

Then XeX and for some kel , X¢F (x) for al x eA . That is,

A < S (X) . From(2), q.(A"™) cT.(X). Thisimpliesthat, for this k ,
YEETR(Y). [ |

By using the results of Theorem 4.1, we can derive the following generalization of
Corollary 8 in[8] which generalized the Fan’s result ([4], Lemma4):
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Theorem 4.2: Foreach kel let (X,.{q,}) bea pseudo space. X :erl Xy

Let A,B <X, xX for kel.
(1) foreach kel and y, e X,, the set {xe X :(y,,x)€B,} is compactly
closedin X,
(2) forany x=(X,X,,...X,)e X andforeach kel, (x.,x)eA,
(38) forany xe X, if the sets {y, € X, :(y,,X)¢B,}, kel, are nonempty,
then the set {y, € X, :(y,,X)¢ A} is q -convex relative to the set
Ve e X 1 (Y- X) ¢ B} 5 and
(4) there are kel and y, € X, such that the set {xe X :(y,,x)eB,} is
compact.
Thenthereisan Xe X suchthat X, x{X} c B, foreach kel.
Proof: Foreach k e |, wedefine S, T, : X =2 by
S (¥) ={y, € X, : (Y- X) € By},
and
T ) ={y e X, : (y-X) € A}-
By (1), S,*(y,) iscompactly openin X, foreach kel and y, € X, . For each
kel, by (3),if S, (x) isnonempty, then for each nonempty finite subset C, of

S, (x), we have q, (A“™)cT,(x). From (2), we know that x, ¢T,(x) for each

xe X and kel.Applying Theorem4.1, thereisan X e X suchthat S, (X) =<
foradl kel.Thisimplies

(x.,X)e B, foralk el and x, € X,,
and hence, thereisan X e X suchthat X, x{X} =B, fordl kel.

5. System of Variational Inequalities

Now, for the family of the functions {f, : X, x X - R},_,, we can consider the

system of variational inequalities (in short, SVI) which isto find X e X such that
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foreach kel, f (x.,X)>0,foradl x eX,.

The existence theorem of the system of variationa inequalities was discussed by
Ansari and Yao [1]. Now we want to establish the existence theorem of system of
variational inequalities on pseudo space.

Theorem 5.1: For each kel let (X,,{d,}) be apseudo space and let f, and
g, be two real-valued functions defined on X x X, . Suppose that

(1) for each kel and vy, € X,, the mapping x— f (y.,X) is upper
semi-continuous on any compact set of X,

(2) forany x=(x,X,,...X,)e X andeach kel, g,(x,x)=0,

(B) forany xe X andeach kel, if the the set {y, € X, : f (Y,,X) <0} is
nonempty, then the set {y, € X, : 9, (y,,X) <0} is q-convex relative to
the set {y, € X, : f, (y,,X) <0} ; and

(4) thereare ke K and vy, € X, suchthattheset {xe X : f, (y,.,x) =0}

is compact.
Thenthereisan X e X suchthatforall x, € X,, f (x,X)>0 foreach kel.
Proof: For each kel , lea A ={(X,X)eX, xX:0,(X,X)>0 and

B, ={(X.,X) e X, x X : f (X,Xx) =0} . Then al the conditions of Theorem 4.2 hold,
and then we can deduce the conclusion that there is an Xe X such that
X x{X} =B, foreach kel.Thatis, thereisan X X suchthatforeach kel,
f.(x,X)>0 for dl x eX,. u

Theorem 5.2: For each kel let (X,.,{d,}) be a pseudo space and let f, and
g, be two real-valued functions defined on X x X, . Suppose that
(1) for each kel and y eX,, the mapping x— f (y,,X) is upper
semi-continuous on any compact set of X ,
(2) forany x=(X,X,,...X,)€ X andeach kel, g,(x,x)=0,
(@) for each kel , f(y.x)<0 implies g,(y.,x)<0 for all
(V- X) € X x X,
(4) for each kel and xeX , either (a) if the the set
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{y. e X, : f.(y,x) <0 isnonempty, then the set {y, € X, : f, (y,,X) <0}
is g -convex set, or (b) if the the set {y, € X, : 9, (Y,,X) <G} is nonempty,
then the set {y, € X, : 9, (y,,X) <O} is q-convex set; and
(5) there are ke K and y, € X, such that the set {xe X : f (y,,X)>0} is
compact.
Thenthereisan Xe X suchthatforeach kel, f (x,X)>0,forall x eX,.

Proof: The result will follow from Theorem 5.1 when we show that: if the the set
{y. € X, : f (y,X) <0} is nonempty, then for any nonempty finite subset C, of

{yi e Xyt fi (Y, X) <G, wehave q, (A c{y e X, 19 (V, ) <O}

Foreach xe X ,let C, beany nonempty finite subset of {y, € X, : f, (y,,x) <0}.

First, we assume that the condition (@) of (4) holds. Then we have

q, (A% c{y, e X, : f (¥,»X) <O . Thenfor each yeq, (A“™), f(y,x)<O.

Fom (3, g,(%,0<0, and hence g, (A% c(y, X, :9,(%.X) <0} .

Secondly, we assume that the condition (b) of (4) holds. For each yeC,,
f (y,x) <0, and then we have g, (y,x) <0 by (3). Hence C, isafinite subset of

{Yi € X 19V, X) <@ andwehave g, A"y e X 9(V. <0 .

Next, let E, beaHausdorff topological vector space with its topological dual
E,, X, beanonempty convex subsetof E, and A beafunction defined on
X into E, for kel.Thecase f (y,,X)=<A(X),Y, —X > where <-,->
denotesthe pairing between E, and E, foreach k el wasdiscussed by Pang
[10] with applicationsin equilibrium problems. Bianchi [2] proved the existence of
solutions of the system of variational inequalities by using the Fan-KKM Theorem.
The existence theorem was a so studied by Cohen and Chaplais[3], Zhu and

Marcotte [12].
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Corollary 5.3: For each kel, let A be a function defined on X into E,.

Suppose that
(1) foreach kel, A isuppersemi-continuous on any compact setof X,
(2) there is a family {g, :k € 1} of real-valued functions defined on X x X,
such that
(@ for each kel, <A (X),y, —x ><0 implies g,(y,,x)<0 for all
(Y- X) € X, x X,
(b) for any x=(x.X,,...%x,)eX , X, eX, and each kel ,
g, (X.,Xx)=0; and
(3) there are kel and Y, € X, such  that the  set
{xe X :<A(X),y, —x >=0 iscompact.
Then there is an X e X such that for each kel, <A (X),y, —x>=0 for all
Yi € Xy
Proof: For each k € |, wedefine f,(y,,X)=<A(X),y, —x, > foral
(Y, x) € X, x X . Then, by Theorem 5.2, thereisan X € X such that for each
kel, <A(X),y,—x>>0 fordl vy, € X,. [
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